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To understand the roles of divertor in ELM dynamics

» The X-point of a divertor tokamak was believed to
introduce new regimes of edge instabilities (RX mode) [1].

» During the late nonlinear stage of ELMs, field line
stochasticity induced by the divertor configuration may play
significant roles in ELM dynamics [2].

» In general, it is not clear if the presence of divertor
separatrix is a prerequisite for the onset of ELMs.

» Recent NIMROD simulations have observed an edge
ballooning instability with distinctively different mode
structures and active regimes in a divertor tokamak.

[1]1 J.R. Myra and D. A. D’Ippolito, Phys. Plasmas 12, 092511 (2005).

[2] L. Sugiyama and H. Strauss, ELMs: A new type of plasma instability, CEMM Workshops, 2009; L. Sugiyama,
APS-DPP talk, 2009.



NIMEQ generates tokamak equilibria with a single null
divertor for this study

» NIMEQ is a direct Grad-Shafranov equilibrium solver
developed within NIMROD framework (Howell and sovinec 2008).

» NIMEQ has been applied to construct toroidal equilibria
with a wide range of complexities.
» A circular-shaped tokamak equilibrium with a single null
divertor is generated using NIMEQ:
» Pressure P(V) and current F(V) profiles are prescribed for
both closed and open flux regions.
» Boundary B - n is prescribed to model effects of external

coils.
» Double null divertor equilibrium can be similarly obtained.



Core plasma is defined by the pressure and current
profiles inside edge pedestal foot




Edge plasma outside pedestal features a single null
separatrix
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In a limiter tokamak (no separatrix), ballooning mode
structures are localized near outboard midplane with
up-down symmetry (n = 15)
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Mode structures remain similar in presence of

separatrix in dissipative regime (6, = —82.5,n = 15)
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» Mode amplitudes remain peaked in outboard middle plane
and up-down symmetry.



Mode structures are very different in presence of
separatrix in ideal regime (0, = —82.5,n = 15)
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» Mode structures seem peaked near X-point of separatrix.




Transition of mode structure from limiter-like to
divertor-like can be also modulated by resistivity
(0 = —82.5,n = 15)

o or or
3 S S
P
. ey - N (el
oL GRS -
S O \ﬁ =) S wrE S
N ¢ [&))
N3 L\ ) N3 NS ©
A ) \
o v w o Y P
& I st S sr Lorcd>
SN e
X =
o o o E
<t ‘ Els <t ‘ ‘
20 25 3.0 35 4.0 20 20 25 3.0 35 4.0
R
or or or
3 = =
ol Wl Wl
=} =} (=]
NS NS NS
n n n
Els sr sr
S = - = B
it <t it
20 25 30 35 4.0 20 25 30 35 4.0 20 25 30 35 4.0

R R R
» “X-point mode” seems to mostly exist in S — oo regime.



Growth rates of resistive and diffusive ballooning
approach the ideal X-point mode from opposite ends
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Linear mode structures are also regulated by X-point
location
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» Upper row: ideal mode; Lower row: diffusive mode



Linear growth increases as X-point moves to outboard

thetax=-120, gamma=3.12e5
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» Diffusive regime:
Dhyper =0, n= 0



Summary

» NIMROD calculations have identified two types of
ballooning instabilities of a divertor tokamak in two
opposite collisionality regimes.

» In collisional regime, ballooning mode has a similar
structure as in a limiter tokamak;

» In ideal regime, ballooning mode structure is localized near
X-point instead of outboard midplane.



Future work on ballooning instability physics

» CEMM relevant topics
» Mostly in context of ELMs
2D shaping (non-circular shape, divertor separatrix/X-point)
3D shaping effects (RMP)
Edge shear flow effects
Peeling-ballooning coupling
Nonlinearity
» Marginal state crossing and detonation regime
» Late nonlinear regimes: saturation, filament and blob
» Nonideal effects (resistive,2-fluid, kinetic, hot-particle)
» Determine edge stability boundary.
» Supporting topics
» Mostly in context of substorms (NSF, CMSO)
» Interchange and ballooning instabilities of plasma sheet.
» Coupling to tearing instability and reconnection process.

» Verification and validation efforts
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